Near-Net-Shape manufacturing by Linear Friction Welding

Bertrand Flipo
Titanium Europe 2014
Aerospace 1 session, 20th May
Near Net Shape Manufacturing by LFW

- What Linear Friction Welding (LFW) is?
 - How fast, reproducible
 - Why it keeps a forged microstructure

- What manufacturing with LFW means?
 - How can it help stabilising a production
 - How it can help reducing component “time to market”

- Applications of LFW for Aerospace
 - What is the typical LFW manufacturing route
 - Is it cost efficient
 - How can it stimulate new designs
TWI: The Welding Institute

- £75M/year of R&D in
 - Materials Joining
 - Structural Integrity and
 - NDT undertaken each year

- 850 employees

- Five UK technical centres and 11 international offices and training centres

- More than 700 Industrial Members in 3500 locations in 79 countries

- Non-governmental and not for profit distributing organisation
Friction and Forge Processes Team

- Based in Cambridge
- 15 Engineers and Technicians
- 53 years of R&D in Friction Processes
 - Started Rotary Friction Welding in 1961
 - Pioneered Linear Friction Welding in 1984
 - Invented Friction Stir Welding in 1991
- Capability at all TRLs / MRLs
 - Concept
 - Feasibility
 - Development
 - Demonstration
 - Application
 - Procurement
 - Support
Linear Friction Welding

High quality, automated, quick, self regulated, self cleaning, repeatable welding process

Linear Friction *Stir* Welding
LFW current products: Blisks

- Critical aero engine component: compressor rotor
- Mature production: fighters engines
 - Power to Weight ratio
 - Performance

- Uptake: large civil engines
- Fuel saving
- Environmental regulations
- In-house knowledge and qualification
LFW: High Quality Weld in Ti Alloys

- Fine grained hot forged microstructure
- Thin heat affected zone
- Recrystallised to fine grained equiaxed microstructure at weld centre
LFW of Titanium alloys

- Dependable
 - Fast: typical cycle time under 5min
 - Accurate: typical positioning under 0.10mm
 - Reproducible: typical positioning under 0.25mm

- Performant
 - Preserves a forged microstructure
 - Can be post weld heat treated for performance
 - Near-parent tensile and fatigue properties can be achieved

- Currently applied to critical AeroEngine components
Airframe bracket by LFW route

- Case study: Bracket
 - Standard manufacturing route: machined from solid
 - Buy to fly: 12.5 : 1
 - 2000 parts/year over 10 years
 - Would require 27 milling CNCs
Typical LFW production route

Workpiece A

Linear Friction Welding → PWHT → NDI → Final Machining

Workpiece B
LFW production route: Bracket

Foot from plate

Upstand from plate

Linear Friction Welding (1 machine)

PWHT

NDI

Final Machining (7 CNCs)

Buy to Fly 1.6 : 1

81% potential costs savings
NNS by LFW: Notable Potential Savings

- 81% potential overall costs savings
 - 87% on materials
 - 61% in production
 - £9.8m or $15m/year potential savings

- Buy to Fly
 - 12.5 : 1 originally
 - 1.6 : 1 for LFW route

- Viable route
 - Bracket: 400 parts/year
 - Large influence of material costs

Benefits of LFW production route

- Control input material = stabilise production costs
 - Near net shape of simple components
 - Can make use of common Ti stock plates
 - Helps reducing component “time to market”

- Produce faster
 - LFW’s fast cycle time means less machines
 - One LFW machine can serve several CNCs

- Start producing quicker
 - Production changeover under 30min possible
 - Typical new tooling manufacture: Start an entire new production under 15 days
Material tailoring
- Dissimilar grades of Ti alloy can be welded together for performance (strain, temperature, weight, costs)

New Design Freedoms
- Adding large components together
- Small protruding features
- Strengthening element
- Reducing part count
- LFW can open design beyond traditional considerations

Example:
- Ti6246
- Ti64

Courtesy of Airbus
Half Machined wing rib Segment

- Potential for other aerospace materials
 - Nickel superalloy
 - Aluminium Copper Lithium

- Ex: Al-Cu-Li wing rib segment
 - 95+ % Yield and UTS
Near Net Shape Manufacturing by LFW

- **Disruptive production method**
 - Fast and reproducible addition of components
 - Keeps forged microstructure
 - Keeps forged parts characteristics

- **Agility in manufacturing**
 - Stabilises production costs by controlling Ti input
 - Can make use of common stock plates for a range of parts
 - Helps reducing component “time to market”

- **Application in Aerospace**
 - Alternative, cost efficient production path
 - Allows material tailoring
 - Opens to new designs freedoms
TWI’s 3rd Biennial International Linear Friction Welding Symposium

19th March 2015 in Cambridge

Contact: Richard Freeman
richard.freeman@twi.co.uk
Bertrand Flipo
Senior Project Leader
Friction and Forge Processes
Joining Group
TWI Ltd

Tel: +44 (0)1223 899 000
E-mail: bertrand.flipo@twi.co.uk
Web: www.twi-global.com